Home

 

 

MagneticWater

RushStar's Magnetic Water Strap

  RushStar Brings Natural Life Back To Your Home

 

image of girl drinking from fountain

Metal Contaminants in Your Drinking Water!....TRAP Them

"Many water treatment utilities rely on a combination of ozone and activated charcoal filtration. Ozone is an attractive disinfectant for two reasons. First, it disinfects very well. Second, it leaves water with a pleasant fruity taste. But it also has drawbacks, among them the fact that its byproducts nourish microorganisms. And it will not reduce all other Metal contaminants. That's where RushStar THE INNOVATIVE Water Pipes MAGNETIC STRAP comes in. You don't have to wait for your utility to start using an advanced filtering system to get the benefits of filtered water.

 

11magnetwater.jpg (8081 bytes)

 RUSH STAR's INNOVATIVE

MAGNETIC WATER STRAP

People are increasingly concerned about the safety of their drinking water. As improvements in analytical methods allow us to detect impurities at very low concentrations in water, water supplies once considered pure are found to have contaminants. We cannot expect pure water, but we want safe water.

 

RushStar THE INNOVATIVE Water Pipes MAGNETIC STRAP CLEANS & PROTECTS YOUR Drinking water from metal contaminants.

Containers Orders Only

Reasonably priced !

Compare to expansive machines $400 ~ $1200

water.tif (2208972 bytes)

 

The Keyword is Water Hardness

The phrase hard water originated when it was observed that water from some sources requires more laundry soap to produce suds than water from other sources. Waters that required more soap were considered "harder" to use for laundering.

Water "hardness" is a measure of dissolved mineral content. As water seeps through soil and aquifers, it often contacts minerals such as limestone and dolomite. Under the right conditions, small amounts of these minerals will dissolve in the ground water and the water will become "hard." Water hardness is quantified by the concentration of dissolved hardness minerals. The most common hardness minerals are carbonates and sulfates of magnesium and calcium. Water with a total hardness mineral concentration of less than about 17 parts per million (ppm) is categorized as "soft" by the Water Quality Association (Harrison 1993). "Moderately hard" water has a concentration of 60 to 120 ppm. "Very hard" water exceeds 180 ppm.

Hard water is often undesirable because the dissolved minerals can form scale. Scale is simply the solid phase of the dissolved minerals. Some hardness minerals become less soluble in water as temperature is increased. These minerals tend to form deposits on the surfaces of water heating elements, bathtubs, and inside hot water pipes. Scale deposits can shorten the useful life of appliances such as dishwashers. Hard water also increases soap consumption and the amount of "soap scum" formed on dishes.

Many homeowners and businesses use water softeners to avoid the problems that result from hard water. Most water softeners remove problematic dissolved magnesium and calcium by passing water through a bed of "ion-exchange" beads. The beads are initially contacted with a concentrated salt (sodium chloride) solution to saturate the bead exchange sites with sodium ions. These ion-exchange sites have a greater affinity for calcium and magnesium, so when hard water is passed through the beads the calcium and magnesium ions are captured and sodium is released. The end result is that the calcium and magnesium ions in the hard water are replaced by sodium ions. Sodium salts do not readily form scale or soap scum, so the problems associated with hard water are avoided.

A 1960 survey of municipal water supplies in one hundred U.S. cities revealed that water hardness ranged from 0 to 738 ppm with a median of 90 ppm (see Singley 1984). Ion-exchange water softeners are capable of reducing the hardness of the incoming water supply to between 0 and 2 ppm, which is well below the levels where scale and soap precipitation are significant.

One of the principal drawbacks of ion-exchange water softeners is the need to periodically recharge the ion exchange beads with sodium ions. Rock salt is added to a reservoir in the softener for this purpose.

 

Magnetic Water Treatment

A wide variety of magnetic water treatment devices are available, but most consist of one or more permanent magnets affixed either inside or to the exterior surface of the incoming water pipe. The water is exposed to the magnetic field as it flows through the pipe between the magnets. An alternative approach is to use electrical current flowing through coils of wire wrapped around the water pipe to generate the magnetic field.

Purveyors of magnetic water treatment devices, exposing water to a magnetic field will decrease the water's "effective" hardness. Typical methods include the elimination of scale deposits, lower water-heating bills, extended life of water heaters and household appliances, and more efficient use of soaps and detergents. Thus, it is claimed, magnetic water treatment gives all the benefits of water softened by ion-exchange without the expense and hassle of rock-salt additions.

Note that only the "effective" or "subjective" hardness is used to be reduced through magnetic treatment. 

According to many manufacturers, magnetically softened water is healthier than water softened by ion exchange. Ion-exchange softeners increase the water's sodium concentration, and this, they explain, is unhealthy for people with high blood pressure. While it is true that ion-exchange softening increases the sodium concentration, the amount of sodium typically found even in softened water is too low to be of significance for the majority of people with high blood pressure. Only those who are on a severely sodium-restricted diet should be concerned about the amount of sodium in water, regardless of whether it is softened (Yarows et al. 1997). Such individuals are often advised to consume dematerialized water along with low-salt foods.

More than one hundred relevant articles and reports are available in the open literature, so clearly magnetic water treatment has received some attention from the scientific community (e.g., see reference list in Duffy 1977). The reported effects of magnetic water treatment, reasonable evidence for an effect is provided.

Liburkin et al. (1986) found that magnetic treatment affected the structure of gypsum (calcium sulfate). Gypsum particles formed in magnetically treated water were found to be larger and "more regularly oriented" than those formed in ordinary water. Similarly, Kronenberg (1985) reported that magnetic treatment changed the mode of calcium carbonate precipitation such that circular disc-shaped particles are formed rather than the dendritic (branching or tree-like) particles observed in nontreated water. Others (e.g., Chechel and Annenkova 1972; Martynova et al. 1967) also have found that magnetic treatment affects the structure of subsequently precipitated solids. Because scale formation involves precipitation and crystallization, these studies imply that magnetic water treatment is likely to have an effect on the formation of scale.

Some researchers hypothesize that magnetic treatment affects the nature of hydrogen bonds between water molecules. They report changes in water properties such as light absorbance, surface tension, and pH (e.g., Joshi and Kamat 1966; Bruns et al. 1966; Klassen 1981). However, these effects have not always been found by later investigators (Mirumyants et al. 1972). Further.

Duffy (1977) provides experimental evidence that scale suppression in magnetic water treatment devices is due not to magnetic effects on the fluid, but to the dissolution of small amounts of iron from the magnet or surrounding pipe into the fluid. Iron ions can suppress the rate of scale formation and encourage the growth of a softer scale deposit. Busch et al. (1986) measured the voltages produced by fluids flowing through a commercial magnetic treatment device. Their data support the hypothesis that a chemical reaction driven by the induced electrical currents may be responsible for generating the iron ions shown by Duffy to affect scale formation.

Among those who report some type of direct magnetic-water-treatment effect, a consensus seems to be emerging that the effect results from the interaction of the applied magnetic field with surface charges of suspended particles (Donaldson 1988; Lipus et al. 1994). Krylov et al. (1985) found that the electrical charges on calcium carbonate particles are significantly affected by the application of a magnetic field. Further, the magnitude of the change in particle charge increased as the strength of the applied magnetic field increased.

Gehr et al. (1995) found that magnetic treatment affects the quantity of suspended and dissolved calcium sulfate. A very strong magnetic field (47,500 gauss) generated by a nuclear magnetic resonance spectrometer was used to test identical calcium sulfate suspensions with very high hardness (1,700 ppm on a CaCO3 basis). Two minutes of magnetic treatment decreased the dissolved calcium concentration by about 10 percent. The magnetic field also decreased the average particle charge by about 23 percent. These results, along with those of many others (e.g., Parsons et al. 1997; Higashitani and Oshitani 1997), imply that application of a magnetic field can affect the dissolution and crystallization of at least some compounds.

Busch et al. (1997) measured the scale formed by the distillation of hard water with and without magnetic treatment. Using laboratory-prepared hard water, a 22 percent reduction in scale formation was observed when the magnetic treatment device was used instead of a straight pipe section. However, a 17 percent reduction in scaling was found when an unmagnified, but otherwise identical, device was installed. Busch et al. (1997) speculate that fluid turbulence inside the device may be the cause of the 17 percent reduction, with the magnetic field effect responsible for the additional 5 percent.

Magnetic Treatment Does Work

WATERPIPE.jpg (3020 bytes)

 

 

Home RushStar R.S.Proteks Contact us Privacy Contact us

 Copyright protected RushStar Technology bank 1994 ~2015